{Nadeem Haddadeen}

Arabic SEO Consultant, Python for SEO From Jordan

SEO Log File Analysis on a Large Scale with Python & MySQL

SEO Log File Analysis on a Large Scale with Python & MySQL

Working on big websites containing millions of pages is challenging to track bot's behavior on your websites. The access log file is the best source for getting this information about the bots and what they visit every day for better understanding and best results for your SEO.

What Is the Access Log File?

Access log files are files on your server that store every visit from bots or real users on your website, and it is real-time tracking where you can see the most visited pages on your website, a time, IP, and many other details.

Where Can I Find My Access Log Files for SEO

If you are running your website on a Linux and Apache server, you can find them under /var/log/apache2

How Access Log Files Are Stored on the Server

By default, the Apache server rotates the access log files and compresses them in GZ format to save space on the server.

How Does the Access Log File Content Look Like

This is a sample from the Apache access log file with the default format - - [25/Dec/2021:21:55:06 +0200] "GET /coins/win/ HTTP/1.1" 200 6383 "-" "Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)

You will find thousands like the above line in your log files, and in this tutorial and for SEO purposes, we will learn how to read these files to track the behavior of Google bots on your website for each bot and page type. And you can build your dashboard using your preferred tool like Google Data Studio, Tableau, and Power BI.

Download Access Log Files From the Server

The first step is to get all the access log files from the server. If your server is running on Apache, you can find them under /var/log/apache2.

Here we will use the compressed files and leave the .log files since they are not ready yet and still the Apache is collecting logs and writing into them.

Download Google Access Log Files

The second step is to locate all your compress logs in a folder to access them through a Python script.

Python Libraries

We will be using the below Python libraries to do all the work for our SEO log file analysis task

import pandas as pd
import glob
from urllib.parse import unquote
from collections import Counter
import matplotlib.pyplot as plt
import re
import gzip
from datetime import datetime
import mysql.connector
from tqdm.notebook import tqdm

Get all the files with .gz extension

logs_gz = glob.glob("source/*.gz")

Define a name for the final text file that we will use after extracting all the compressed files.

log_text_file_name = "source/logs.txt"

Extract the compressed files and append them to a new text file

for log_gz in logs_gz:
    with gzip.open(log_gz, 'rb') as f_in:
        with open(log_text_file_name, 'a') as f_out:
            log_file_lines = f_in.readlines()
            for line in log_file_lines:
                f_out.write(str(line) + "\n")

Define a domain name to use in the URLs. Usually, the log files remove the domain name and include only the page's path after the TLD.

domain = "https://www.arabcryptocap.io"

Parse the final text file and import its content to a Pandas data frame, thanks to Stack Overflow

df = pd.read_csv(log_text_file_name,
              usecols=[0, 3, 4, 5, 6, 7, 8],
              names=['ip', 'time', 'request', 'status', 'size', 'referer', 'user_agent'],

The data frame looks like this

Access Log File Pandas dataframe

As you can see, some values need to be formated, like date, time, and requests. We will do that using the below lines.


def clean_reuqest(request, domain):
    request = unquote(str(request).replace("POST ","").replace("GET ",""))
    request_url = domain + request.split()[0].replace('"',"").replace("[","").replace("]","").replace("[","").replace("]","")
    return request_url

df["request"] = df["request"].apply(lambda request : clean_reuqest(request, domain))

Date and Time

def get_time(time):
    if str(time) != "None":
        time = str(time).split(" +")[0].replace("[","").replace("]","")
        date_obj = datetime.strptime(time, "%d/%b/%Y:%H:%M:%S")
        final_time = date_obj.strftime("%m/%d/%Y :%H:%M:%S")
        return final_time

df["time"] = df["time"].apply(lambda time : get_time(time))

def get_date(time):
    if str(time) != "None":
        datetime_object = datetime.strptime(time, '%m/%d/%Y :%H:%M:%S')
        request_date = datetime_object.strftime("%d-%m-%Y")
        return request_date

df["Date"] = df["time"].apply(lambda time : get_date(time))
The above formats for the date and time can be used in Google Sheet. We will change them later for MySQL databases.


df["ip"] = df["ip"].apply(lambda ip : str(ip).replace("b'",""))

User Agents

df["user_agent"] = df["user_agent"].apply(lambda ua : str(ua).replace('"',""))

Filtering Google Bots From Access Log File

In this tutorial, we will work only on Google bots for our SEO log file analysis task and ignore the rest of the bots.

To do that, we will get the requests with IPs starting with 66.

def get_bot_type(ip):
    if re.match("^66.", ip):
        return "Google Bot"
        return "Other Bot"

df["Bot Type"] = df["ip"].apply(lambda x : get_bot_type(x))

You can find the whole list of Google Bots IPs in JSON format from this link.

We will check every request and define Google Bot type from the below list.

Google bots and their user agents strings

Google Bot NameFull User-Agent String
Googlebot ImageGooglebot-Image/1.0
Googlebot DesktopMozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)
Googlebot SmartphoneMozilla/5.0 (Linux; Android 6.0.1; Nexus 5X Build/MMB29P) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/W.X.Y.Z Mobile Safari/537.36 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)

You can find the complete list of Google Bots user agents from here

def get_google_bot_type(ua):
    ua = str(ua)
    if ua.find("APIs-Google") > -1:
        return "APIs Google"
    elif ua.find("Mediapartners-Google") > -1:
        return "Mediapartners Google"
    elif ua.find("AdsBot-Google-Mobile") > -1:
        return "AdsBot Google Mobile"
    elif ua.find("AdsBot-Google") > -1:
        return "AdsBot Google"
    elif ua.find("Googlebot-Image") > -1:
        return "Googlebot Image"
    elif ua.find("Googlebot-News") > -1:
        return "Googlebot News"
    elif ua.find("Googlebot-Video") > -1:
        return "Googlebot Video"
    elif ua.find("AdsBot-Google-Mobile-Apps") > -1:
        return "AdsBot-Google-Mobile-Apps"
    elif ua.find("FeedFetcher-Google") > -1:
        return "FeedFetcher Google"
    elif ua.find("Google-Read-Aloud") > -1:
        return "Google Read Aloud"
    elif ua.find("DuplexWeb-Google") > -1:
        return "DuplexWeb-Google"
    elif ua.find("Google Favicon") > -1:
        return "Google Favicon"
    elif ua.find("googleweblight") > -1:
        return "Google Web Light"
    elif ua.find("Storebot-Google") > -1:
        return "Storebot Google"
    elif ua.find("Googlebot/2.1") > -1 and ua.find("Mobile") > -1:
        return "Google Bot Mobile"
    elif ua.find("Googlebot/2.1") > -1:
        return "Google Bot Desktop"
    elif ua.find("Chrome-Lighthouse") > -1:
        return "Chrome Lighthouse"
        return "Other"

df = df.loc[df["Bot Type"] == "Google Bot"]

df["Google Bot Type"] = df["user_agent"].apply(lambda x : get_google_bot_type(x))

Now we are done preparing the data, and you can export it into a CSV file and see the results on Google Sheets to start analyzing the behavior of Google Bots and their effect on your SEO results.

Before that, we will analyze our script using the Matplotlib library.

Top HTTP Status Codes

status_codes_list = Counter(df["status"].to_list()).most_common()

status_code_group = []
status_code_count = []
for status_item in status_codes_list:

plt.bar(status_code_group, status_code_count)
plt.xlabel("Request Group")
plt.ylabel("Number of Requests")
Top HTTP status codes

Top Google Bots

bot_type = Counter(df["Google Bot Type"].to_list()).most_common()

bot_name_list = []
bot_value_list = []
for bot_item in bot_type:

plt.ylabel("Number of Requests")
plt.xlabel("Google Bot Type")
Top Google Bots

We can see that most of the requests are from Google Smartphone and Desktop bots.

Define The Page Type

Now I will define a page type for each request from Google bots, and this will help me see if Google crawls the content pages or categories or if I have some pages that are not appropriately linked from the homepage.

In this example, I have three types of pages

  • Coins
  • Exchanges
  • Images (Files)
def get_page_type(page):
    if page.find("/coins/") > -1:
        return "Coins"
    elif page.find("/exchange/") > -1:
        return "Exchange"
    elif page.find("wp-content") > -1:
        return "Images"
        return "Other"

df["Page Type"] = df["request"].apply(lambda page : get_page_type(page))

Then I will get the page name

def get_page_name(row):
    if row["Page Type"] == "Coins" or row["Page Type"] == "Exchange":
        return row["request"].split("/")[4]
    elif row["Page Type"] == "Images":
        return "Images"
        return "No Page"

df["Page Name"] = df.apply(lambda row : get_page_name(row),axis=1)

This will help me analyze the content and keywords to see a correlation between the number of requests from Google bots and traffic.

Save the results in CSV format

df.to_csv("results/google_logs.csv", index=False)

Now you can import the data into Google Sheets and start analyzing the requests per page type and Google bot.

Top Google Bots IPs

top google ips

Requests Per Google Bot

top google bots

Requests Per Page Type

requests per page type

You can find the full analysis on this Google sheet

Backup Google Access Logs Data on MySQL Database

If you plan to do SEO log file analysis every day, storing the data in a MySQL database is better. It is reliable and faster to connect the MySQL database to Google Data Studio or Tableau.

First, we will create our database and create a table with the needed fields.

 `time` datetime NOT NULL,
 `date` date NOT NULL,
 `ip` text NOT NULL,
 `url` text NOT NULL,
 `status_code` text NOT NULL,
 `size` int NOT NULL,
 `user_agent` text NOT NULL,
 `bot_type` text NOT NULL,
 `google_bot_type` text NOT NULL,
 `page_type` text NOT NULL,
 `page_name` text NOT NULL,
mysql table structure

Connect to the database through our Python script

mydb = mysql.connector.connect(

mycursor = mydb.cursor()

Change the data formats for a valid MySQL date and time

def correct_date(date):
    date_obj = datetime.strptime(date, "%d-%m-%Y")
    return date_obj.strftime("%Y-%m-%d")

def correct_time(time):
    time_obj = datetime.strptime(time, "%m/%d/%Y :%H:%M:%S")
    return time_obj.strftime("%Y-%m-%d %H:%M:%S")

Define a function to insert the data into the database

def mysql_insert(request, mycursor):
    time = correct_time(request["time"])
    date = correct_date(request["Date"])
    ip = request["ip"]
    url = request["request"]
    status_code = request["status"]
    size = request["size"]
    user_agent = request["user_agent"]
    bot_type = request["Bot Type"]
    google_bot_type = request["Google Bot Type"]
    page_type = request["Page Type"]
    page_name = request["Page Name"]
    sql = f'insert into logs (`time`,`date`,`ip`,`url`,`status_code`,`size`,`user_agent`,`bot_type`,`google_bot_type`,`page_type`,`page_name`) values ("{time}","{date}","{ip}","{url}","{status_code}","{size}","{user_agent}","{bot_type}","{google_bot_type}","{page_type}","{page_name}")'

Loop over the data frame and insert the data into the database

for index, request in tqdm(df.iterrows()):
    mysql_insert(request, mycursor)

Now we have all the requests stored in a MySQL database

mysql table structure

Quick Tips to Store Google SEO Logs Into MySQL Database

  • Make sure to monitor the space on your server after inserting the data. Sometimes it will exceed 1GB each day.
  • Always remove the data once you are done with the Analysis. You can do this every 2 or 3 weeks to make a room in your server for fresh data.

About the Author

Nadeem Haddadeen
My name is Nadeem Haddadeen, and I'm an SEO professional based in Jordan with over 14 years of experience in the digital world. I specialize in large-scale website optimization, technical SEO, web performance, page speed improvements, Python automation, data analysis, and Arabic SEO. As an experienced instructor, I have a proven track record of providing effective training for teams and developers while honing my skills in communication and collaboration. I'm excited to share my insights and knowledge with you through this blog.